Check Valves Are The Little Part That Can Lead To Big Savings
Check valves are typically thought of as a very simple component of a hydraulic process. They permit the flow of fluid in one direction and prevent flow in the opposite direction. Simple, right? However, these devices can be one of the best fail safes your process has against a very costly shutdown. Faulty valves can have enormous consequences if they are not functioning with the utmost precision.
Beyond flow control, check valves may also be used as a directional or pressure control in a system. If the pressure becomes higher on the wrong side of a valve, it will close and block flow in the opposite direction. This means the check valve will stop pressure spikes back to the pump. Depending on your process, fluid can flow from a pump through the system at very high speeds. If something in the process suddenly causes the fluid flow to be restricted, the pressure in the line can quickly increase by two to three times, causing damage to the system. The check valve should then close and block the pressure spikes back to the pump.
Downtime can be very costly to the bottom-line
A check valve can end up costing companies thousands of dollars in replacement pumps and exponentially more in machine downtime. Downtime is one of the largest sources of lost production time in industrial processes and unplanned downtime can be one of the greatest expenses. When unplanned downtime happens, the cost of overhead is still there being consumed, and no value is being produced. These are the most obvious costs of unplanned downtime, but what about the underlying costs as well? Downtime also throws inventory levels off resulting in less than optimal on hand inventory which can lead to increased operational costs. Also, when employees have to focus on fixing a downtime issue this takes away from time they could be using to innovate and create growth opportunities for the company.
Safety first
One of the highest concerns of a check valve failure is the safety. If a check valve fails, the potential for leakage or even a blow-out is a possibility. A blow-out occurs when the shaft-disk in the valve experiences a separation. This type of failure has occurred even when valves are being operated within their temperature and pressure limits, further justifying the utilization of a high quality product. While a catastrophic blow-out from a faulty valve may be rare, even the smallest of leaks can create safety hazards that can be dangerous for the operators. Ensuring that your check valves are well maintained, and of high quality can help mitigate these risks.
Parker valves provide a durable, precise solution
Parker C-Series Check Valves have fully guided poppets. Their superior design eliminates wobble and erratic travel that can commonly occur with less durable ball check constructed check valves. The soft seal poppet on the check valves are standard for sizes up to 1/2” NPT, #10 SAE. They can withstand pressures up to 5000 PSI and flow rates up to 150 GPM. Customers around the world recognize the Parker brand as the benchmark for high performance and best in industry quality. In a product as small as a check valve, performance and quality can lead to big savings in the industrial process.
Parker C-Series Check Valves and N-Series Needle Valves are now available for purchase on Parker.com. Simply add products to your cart for shipment within two days for in-stock items.
Article contributed by Matthew Davis, to be named, product sales manager, Hydraulic Valve Division, Parker Hannifin Corporation.
Related content:
Reducing Fugitive Emissions – Meeting ISO Standards with Process to Instrument Valves
How to Avoid Risk of Ignition When Oxygen is Present in Valve Applications
Mixing Materials in Corrosive Environments
How to Use Smart Sensors to Aid Predictive Maintenance Strategies
Source: Parker Feed